15 research outputs found

    The Atacama Cosmology Telescope: A Measurement of the 600< ell <8000 Cosmic Microwave Background Power Spectrum at 148 GHz

    Full text link
    We present a measurement of the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz. The measurement uses maps with 1.4' angular resolution made with data from the Atacama Cosmology Telescope (ACT). The observations cover 228 square degrees of the southern sky, in a 4.2-degree-wide strip centered on declination 53 degrees South. The CMB at arcminute angular scales is particularly sensitive to the Silk damping scale, to the Sunyaev-Zel'dovich (SZ) effect from galaxy clusters, and to emission by radio sources and dusty galaxies. After masking the 108 brightest point sources in our maps, we estimate the power spectrum between 600 < \ell < 8000 using the adaptive multi-taper method to minimize spectral leakage and maximize use of the full data set. Our absolute calibration is based on observations of Uranus. To verify the calibration and test the fidelity of our map at large angular scales, we cross-correlate the ACT map to the WMAP map and recover the WMAP power spectrum from 250 < ell < 1150. The power beyond the Silk damping tail of the CMB is consistent with models of the emission from point sources. We quantify the contribution of SZ clusters to the power spectrum by fitting to a model normalized at sigma8 = 0.8. We constrain the model's amplitude ASZ < 1.63 (95% CL). If interpreted as a measurement of sigma8, this implies sigma8^SZ < 0.86 (95% CL) given our SZ model. A fit of ACT and WMAP five-year data jointly to a 6-parameter LCDM model plus terms for point sources and the SZ effect is consistent with these results.Comment: 15 pages, 8 figures. Accepted for publication in Ap

    The Atacama Cosmology Telescope (ACT): Beam Profiles and First SZ Cluster Maps

    Full text link
    The Atacama Cosmology Telescope (ACT) is currently observing the cosmic microwave background with arcminute resolution at 148 GHz, 218 GHz, and 277 GHz. In this paper, we present ACT's first results. Data have been analyzed using a maximum-likelihood map-making method which uses B-splines to model and remove the atmospheric signal. It has been used to make high-precision beam maps from which we determine the experiment's window functions. This beam information directly impacts all subsequent analyses of the data. We also used the method to map a sample of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect, and show five clusters previously detected with X-ray or SZ observations. We provide integrated Compton-y measurements for each cluster. Of particular interest is our detection of the z = 0.44 component of A3128 and our current non-detection of the low-redshift part, providing strong evidence that the further cluster is more massive as suggested by X-ray measurements. This is a compelling example of the redshift-independent mass selection of the SZ effect.Comment: 16 pages, 10 figures. Accepted for publication in ApJS. See Marriage et al. (arXiv:1010.1065) and Menanteau et al. (arXiv:1006.5126) for additional cluster result

    Characterization of transition edge sensors for the Millimeter Bolometer Array Camera on the Atacama Cosmology Telescope

    No full text
    Atacama Cosmology Telescope (ACT) aims to measure the Cosmic Microwave Background (CMB) temperature anisotropies on arcminute scales. The primary receiver for ACT is the Millimeter Bolometer Array Camera (MBAC). The MBAC is comprised of three 3202 transition edge sensor (TES) bolometer arrays, each observing the sky with an independent set of band-defining filters. The MBAC arrays will be the largest pop-up detector arrays fielded, and among the largest TES arrays built. Prior to its assembly into an array and installation into the MBAC, a column of 32 bolometers is tested at similar to 0.4 K in a quick-turn-around dip probe. In this paper we describe the properties of the ACT bolometers as revealed by data from those tests, emphasizing a characterization that accounts for both the complex impedance and the noise as a function of frequency

    Optomechanical design and performance of a compact three-frequency camera for the MBAC receiver on the Atacama Cosmology Telescope

    No full text
    The 6-meter Atacama Cosmology Telescope will map the cosmic microwave background at millimeter wavelengths. The commissioning instrument for the telescope, the Millimeter Bolometer Array Camera, is based on a refractive optical system which simultaneously images three separate fields of view at three different frequencies: 145, 220, and 280 GHz. Each frequency band contains around twelve individual optical elements at five different temperature stages ranging from 300 K to 300 mK and a 32 x 32 array of Transition Edge Sensor bolometers at 300 mK. We discuss the design of the close-packed on-axis optical design of the three frequencies. The thermal design and performance of the system are presented in the context of the scientific requirements and observing schedule. A major part of the design was the incorporation of multiple layers of magnetic shielding. We discuss the performance of the 145 GHz optical system in 2007 and the implementation of the additional two frequency channels in 2008

    Opto-mechanical design and performance of a compact three-frequency camera for the Millimeter Bolometer Array Camera on the Atacama Cosmology Telescope

    No full text
    The 6-meter Atacama Cosmology Telescope will map the cosmic microwave background at millimeter wavelengths.The commissioning instrument for the telescope, the Millimeter Bolometer Array Camera, is based on arefractive optical system which simultaneously images three separate fields of view at three different frequencies:145, 220, and 280 GHz. Each frequency band contains around twelve individual optical elements at five differenttemperature stages ranging from 300 K to 300 mK and a 32 x 32 array of Transition Edge Sensor bolometers at300 mK. We discuss the design of the close-packed on-axis optical design of the three frequencies. The thermaldesign and performance of the system are presented in the context of the scientific requirements and observingschedule. A major part of the design was the incorporation of multiple layers of magnetic shielding. We discussthe performance of the 145 GHz optical system in 2007 and the implementation of the additional two frequencychannels in 2008

    OVERVIEW OF THE ATACAMA COSMOLOGY TELESCOPE: RECEIVER, INSTRUMENTATION, AND TELESCOPE SYSTEMS

    No full text
    The Atacama Cosmology Telescope was designed to measure small-scale anisotropies in the cosmic microwave background and detect galaxy clusters through the Sunyaev-Zel'dovich effect. The instrument is located on Cerro Toco in the Atacama Desert, at an altitude of 5190 m. A 6 m off-axis Gregorian telescope feeds a new type of cryogenic receiver, the Millimeter Bolometer Array Camera. The receiver features three 1000-element arrays of transition-edge sensor bolometers for observations at 148 GHz, 218 GHz, and 277 GHz. Each detector array is fed by free space millimeter-wave optics. Each frequency band has a field of view of approximately 22' x 26'. The telescope was commissioned in 2007 and has completed its third year of operations. We discuss the major components of the telescope, camera, and related systems, and summarize the instrument performance

    The effects of the mechanical performance and alignment of the Atacama Cosmology Telescope on the sensitivity of microwave observations

    No full text
    The Atacama Cosmology Telescope is a six meter, off-axis Gregorian telescope for measuring the cosmic microwave background at arcminute resolutions. The Millimeter Bolometer Array Camera (MBAC) is its current science instrument. Erected in the Atacama Desert of Chile in early 2007, it saw first light with the MBAC on 22 October 2007. In this paper we review its performance after one month of observing, focusing in particular on issues surrounding the alignment of the optical system that impact the sensitivity of the experiment. We discuss the telescope motion, pointing, and susceptibility to thermal distortions. We describe the mirror alignment procedure, which has yielded surface deviations of 31 μm rms on the primary and 10 μm rms on the secondary. Observations of planets show that the optical performance is consistent with the telescope design parameters. Preliminary analysis measures a solid angle of about 215 nanosteradians with a full width at half maximum of 1.44 arcminutes at 145 GHz
    corecore